
Abstract-We investigated the ability of a computer algorithm to 
guide the ablative therapy of cardiac arrhythmias.   Specifically, 
in computer simulations we examined the accuracy of this 
algorithm to guide the tip of the ablation catheter to the site of 
the origin of the arrhythmias.  We model both the ECG 
corresponding site of the origin of the arrhythmia and current 
pulses generated from a pair of electrodes at the tip of the 
ablation catheter with a single equivalent moving dipole 
(SEMD).  In the forward problem we employed a realistic 
anatomic geometry torso model.  In the inverse problem we used 
the SEMD model in an infinite homogeneous volume conductor. 
The results of this investigation suggest that the bounded, 
heterogeneous volume conductor introduces systematic error in 
the estimated compared to the true dipole position.  However, we 
found that the systematic error had minor influence in the 
ability of the algorithm to accurately guide the tip of the ablation 
catheter to the site of the origin of the arrhythmia. 
Keywords – Ablation, cardiac arrhythmias, catheter navigation, 
inverse problem, body surface potentials, dipole 
 

I. INTRODUCTION 

 
We have previously presented an inverse algorithm that 

allows us to fit potentials due to an arbitrary bioelectric 
source to a single equivalent moving dipole (SEMD) model 
[1]-[3]. In this algorithm, we achieve fast identification of the 
SEMD parameters, by employing a dipole model in an 
infinite homogeneous volume conductor and ignoring 
distortions due to the bounded, heterogeneous volume 
conductor. We have demonstrated that these SEMD 
parameters for each point during the cardiac cycle provided 
reconstructed potentials that were highly correlated with the 
measured ECGs at the same sites [1] and accurately identified 
spatially separated epicardial sources [2]. We have also 
investigated the effect of measurement noise, as well as 
dipole position and orientation in the accuracy of the inverse 
algorithm to obtain the SEMD parameters in a bounded, 
heterogeneous volume conductor [3]. In that study [3], the 
dipole position had the most significant effect on the accuracy 
of the algorithm and measurement noise did not appear to 
have a significant influence in identifying the SEMD 
parameters. The results of this study also suggested that the 
use of the SEMD model in an infinite homogeneous volume 
conductor introduced an offset in the estimated dipole 
position compared to the true one.  

In the present study, we investigate the ability of this 
algorithm in accurately guiding the ablative therapy of 
cardiac arrhythmias. To accomplish this we model both the 

site of the origin of the arrhythmia and current pulses 
generated from a pair of electrodes at the tip of the ablation 
catheter with a SEMD and we use a realistic anatomic 
geometry torso model and the boundary element method 
(BEM) [4]-[5] to calculate the resulting body surface 
potentials. In the inverse problem the algorithm to estimate 
the SEMD parameters is used.  We seek to examine the effect 
of the systematic error when trying to superpose the dipole 
due to the catheter tip to the dipole due to the site of the 
origin of the arrhythmia.  
 

II. METHODS 
 
A. Forward Problem Calculation Using the BEM 
 

In the present study we calculate the potential distribution 
(forward problem) at the outer surface of a volume conductor 
generated by a dipole of known position, strength and 
orientation using the BEM [4]-[5]. In the BEM, the properties 
of the volume conductor model are approximated by 
realistically shaped compartments of homogeneous 
conductivities. We have constructed a realistic three-
dimensional (3-D) volume conductor model of the torso from 
magnetic resonance imaging (MRI) data sets. Furthermore, 
the BEM requires triangular descriptions of the boundary 
surfaces of the compartments. The model used in this study is 
consisted of torso (490 triangles), heart (1148 triangles) and 
lungs (504 triangles) and is shown in Fig 1 (b). The triangular 
descriptions of the torso, heart and lungs are shown in Fig 1. 
The figure also shows 49 (out of 64) electrode positions in (a). 
The conductivities within the torso, the heart and the lungs 
were 0.20, 0.23 and 0.04 S/m, respectively. Finally, the body 
surface potential distribution at 64 electrode positions 
generated by a dipole in the heart was calculated employing 
the BEM.  
 
B. Inverse Problem Estimation Using the SEMD 
 

In the inverse problem estimation, we employ the SEMD 
model embedded in an infinite homogeneous volume 
conductor. Then, the potential φi at position ri on the body 
surface due to a dipole at r’ with moment p is given by 
 

            φi(r’, p)= p . (ri –r’)/ |ri – r’|3                          (1) 
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Finally, the SEMD parameter estimates (r’, p) are obtained 
using our inverse algorithm that minimized the χ2/dof: 
 
                                                 I 

            χ2/dof = (1/dof) Σ (φi - φi 
m)/ σi, dof = I – 6              (2) 

                                               i=1 

where φi
m is the measured body surface potential at position i 

due to the point dipole calculated using the BEM, σi is an 
estimate of the electrode noise, and I is the number of the 
electrodes. We use the Simplex method to perform the 
minimization by searching in position (r’) space, with the 
unique optimal values of p at each r’ obtained by solving a 
set of three linear equations (∂(χ2/dof)/∂pj=0, j=1,2,3).  We 
use a predefined random number of initial position seeds and 
the Simplex is deemed to converge when the minimized 
χ2/dof for two seeds (out of ten total) yielded dipole positions 
less than 5 mm apart. The optimal solution is then chosen to 
be the solution with the lower χ2/dof. 
  
C. Catheter Navigation Simulation 
 

To analyze the influence of the systematic error during the 
catheter navigation, when trying to superpose the dipole due 
to the catheter tip to the dipole due to the site of the origin of 
the arrhythmia, we conducted the following simulation. We 
modeled both the site of the origin of the arrhythmia and 
current pulses generated from a pair of electrodes at the tip of 
the ablation catheter with a SEMD. So, we placed one dipole 
at the position of the site of the origin of the arrhythmia and 
another one at the tip of the catheter (we assumed that the 
orientation of the catheter was the same with the dipole at the 
tip). 

The BEM is used to calculate the resulting body surface 
potentials due to both dipoles: the one at the site of the origin 
of the arrhythmia and the tip of the ablation catheter. For the 
sake of simplicity, no measurement noise is introduced.  In 
the inverse problem the algorithm to estimate the SEMD 
parameters is used. 

A dipole of magnitude 0.82 Vmm2 is placed in one of the 
ventricles and served as the target site (the site of the origin of 
the arrhythmia) during the catheter navigation. Then, the 
dipole at the catheter tip is introduced in the same ventricle in 
which the target dipole is placed. The position of the tip of the 
catheter is defined to be the initial point of the navigation 
process while the orientation of the catheter tip, i.e. of the 
dipole moment components at the tip, is randomly chosen.  In 
Fig. 2, we show an example of the catheter navigation process 
at the ith step. Assuming that (rc

t)i, is the true position of the 
catheter tip at the ith step we calculate the body surface 
potentials due to the dipole at the catheter tip using the BEM 
and employ these potentials to estimate the position, (rc

e)i, 
and orientation of the dipole at the tip of the catheter using 
our inverse algorithm. Then, we calculate the distance (dr)i 
between the target site, rt, and the estimated position of the 
tip of the catheter. In the next step, (rc

t)i+1, the position of the 
tip of the catheter is adjusted (moved towards the target) by 
moving the dipole at the tip of the catheter |(dr)i| towards the 
target,  while the dipole at  the catheter  tip  is  rotated to have  

 
  

(a) The triangular description of the torso (left) and 49 (out of 64) 
electrode positions on the torso model (right). 

 (b) The triangular descriptions of the heart and lungs in the model. Front 
view (the right side of the figure corresponds to the left side of the body).  
Fig. 1. The realistic anatomical geometry model used in the BEM. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 2. Representative example of the catheter navigation (ith step). Here, (rc

t)i, 
is the true position of the catheter tip at the ith step; (rc

e)i, is the  estimated 
position of the catheter tip at the ith step; (dr)i, is the distance between the 
target site (rt,) and the estimated position of the tip of the catheter (rc

e)i; 
(rc

t)i+1, is the position of the tip of the catheter at the (i+1)th step resulting by 
moving the dipole at the estimated position of the tip of the catheter a 
distance |(dr)i| towards the target. 
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similar  orientation  with  that  of  the  target  dipole  obtained 
using  the  inverse algorithm.  These  steps  are  repeated until 
the distance of the tip of the catheter from the true target 
position becomes smaller than 1 mm. The true target position 
is chosen to stop a trial because one of the purposes of this 
simulation is to examine the effectiveness of the inverse 
algorithm to accurately navigate the tip of the catheter to the 
target position. Ten trials resulting from different initial 
points towards the same target were carried out.  
 

III. RESULTS 
 

Fig. 3 illustrates an example of the trajectory of the tip of 
the catheter in the heart. In this example, the initial distance 
between the target dipole and the catheter tip in the ventricle 
was 64.1 mm and it took 5 iterations to reach the final 
catheter position, which was 0.8 mm apart from the target. 
Table I shows the individual components of the average and 
standard deviation of the final position of the tip of the 
catheter over ten trials. We found that the overall average and 
standard deviation of the distance between the final catheter 
position and the target position was 0.74 ± 0.20 mm. On 
average, it took 6.9 iterations to reach the final catheter 
position. The minimum and maximum number of iterations 
were 4 and 11, respectively. The distance of the position of 
the tip of the catheter from the target position at the beginning 
of the simulation ranged between 24.7 mm and 65.5 mm. The 
distance between the final position of the tip and the target 
position ranged between 0.4 mm and 0.9 mm. These results 
demonstrated that the systematic error alone had minor 
influence in the catheter navigation towards the site of the 
origin of the arrhythmia. 
 

IV. SUMMARY 
 
 In this study, we employed computer simulations to 
investigate the accuracy of an algorithm to guide the ablative 
therapy of cardiac arrhythmias. In these simulations, we 
attempted to reproduce the catheter navigation process 
followed in a clinical procedure to examine the ability of this 
algorithm to accurately guide the tip of the ablation catheter 
to the site of the origin of the arrhythmia. The simulation 
results indicated that the effect of the systematic error in the 
ability of the inverse algorithm to identify the SEMD 
parameters and guide the catheter navigation was minor.  
Furthermore, one of the potential merits of this navigation 
method is that it does not require fluoroscopic guidance to 
guide the tip of the catheter to the site of the origin of the 
arrhythmia.  

In future research, we aim to study the effect of 
measurement noise, target position, number and position of 
electrodes in the catheter navigation. 
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TABLE I    

THE TARGET POSITION AND THE AVERAGE DISTANCE OF THE 
FINAL CATHETER POSITION OVER TEN TRIALS. 

 X (mm) Y (mm) Z (mm) 
Target position 5.03 69.53 40.03 
Final catheter 

position 
5.10±0.29 

 
69.31±0.60 

 
39.76±0.24 

 

 
 
 
 

 
Fig. 3. Representative example of the trajectory of the catheter tip in the 

heart. A white ‘+’ mark denotes the position of the catheter tip in each step. 
The initial and final distances were 64.1 mm and 0.8 mm, respectively. 
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